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1 Introduction

Operational risk, although long recognized by banks and financial institutions as a potential
source of loss, is a relatively young area of study that was only studied as an independent field
for 20 years. In 2001, the Basel Committee on Banking Supervision released a series of papers
that recognized operational risk as an important factor in shaping the risk profile of banks and
other financial institutions. A consultative package on the new Basel Capital Accord (2001) was
proposed that drew attention to the need of managers to take into consideration operational
risks in financial institutions, and the need to have a minimum capital requirement that would
be sufficient to deal with said underlying risks. In this document, operational risk was defined
as: “the risk of direct or indirect loss resulting from inadequate or failed internal processes,
people and systems or from external events.”

The Basel II Accord is based on 3 pillars: (1) Minimum Capital Requirement, (2) Supervisory
Review of Institution’s Capital Adequacy, and (3) Market Discipline through Public Disclosure
of Various Financial and Risk Indicators. Minimum Capital Requirements play the most crucial
role in Basel II and requires the bank to maintain a minimum regulatory capital calculated for
the three major risks: credit risk, market risk, and operational risk.

In this paper, we took a look at the data set containing loss amounts due to Damages to Physical
Assets under the Asset Management business line and identify an appropriate risk capital charge
for this particular line. The main approaches for measuring operational risks capital charge are
the Basic Indicator Approach, Standardized Approach, Internal Measurement Approach, the
Scorecard Approach, and the Loss Distribution Approach. In this paper, we place focus on
using the Loss Distribution Approach to obtain the appropriate risk capital charge based on the
data set. The best fit severity distribution among the Burr, Exponential, Gamma, Lognormal,
Pareto, and Weibull was obtained using the Maximum Likelihood estimates for their parameters.

Furthermore, the best fit distribution for the frequency of the events was chosen among the
(a, b, 1) class of distributions - which include the Poisson, Binomial, Negative Binomial, Geomet-
ric distributions, as well as the Zero Truncated and Zero Modified versions of these distributions,
if applicable. Similar to the severity distribution, the best parameters for these distributions
will be obtained using the Maximum Likelihood estimate.

Lastly, using the Fast Fourier Transform, the discretized distribution of the Aggregate Loss
Variable is obtained. With this, the 99% Value-at-Risk as well as the 99% Tail Value-at-Risk
were calculated.
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2 Data

The data set used in this paper contains the loss amounts due to Damages to Physical Assets
under the Asset Management business line from January 2000 to December 2020. Over said
period, 82 losses arising from damage to physical assets were recorded. The data set was cleaned
by first rescaling the losses to the amount in millions to avoid any numerical stability problems
when fitting a distribution. Figure 1 below shows the severity distribution of an event.

Figure 1: Density Plot of the Severity of Events

Moreover, a time interval of one (1) year was chosen for the frequency of the events. The
frequency of events can be seen Figure 2 below.

Figure 2: Bar Chart of the Frequency of Events

3 Severity Distribution

3.1 Fitting the Severity Distribution

For the severity of the losses, the loss amounts were rescaled to amount in millions. The values
were then fit to the different severity distributions namely the Burr, Exponential, Gamma,
Lognormal, Pareto, and Weibull. This was done using the fitdistplus package of R.

The parameters estimate was obtained using the Maximum Likelihood Estimates. If n obser-
vations x1, x2, . . . , xn come from the same probability density function f(x;θ), the Maximum
Likelihood Estimate θ̂MLE are the set parameters that would maximize the likelihood function

L(θ) =
n∏
i=1

f(xi;θ).
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3.1.1 Burr Distribution

The Maximum Likelihood estimate for the Burr Distribution are the following:

Estimate Std. Error

α 1.154641 0.4708952

γ 1.353386 0.2108058

θ 5.570330 2.6115792

Table 1: MLE Estimates for the Burr Distribution

3.1.2 Exponential Distribution

The Maximum Likelihood estimate for the Exponential Distribution are the following:

Estimate Std. Error

λ 2.867118 0.3185686

Table 2: MLE Estimates for the Exponential Distribution

3.1.3 Gamma Distribution

The Maximum Likelihood estimate for the Gamma Distribution are the following:

Estimate Std. Error

θ 0.481742 0.3888568

α 0.724027 0.0972481

Table 3: MLE Estimates for the Gamma Distribution

3.1.4 Lognormal Distribution

The Maximum Likelihood estimate for the Lognormal Distribution are the following:

Estimate Std. Error

µ -1.884126 0.1395656

σ 1.256090 0.0986875

Table 4: MLE Estimates for the Lognormal Distribution
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3.1.5 Pareto Distribution

The Maximum Likelihood estimate for the Pareto Distribution are the following:

Estimate Std. Error

α 2.336742 0.7614611

θ 0.451950 0.1977023

Table 5: MLE Estimates for the Pareto Distribution

3.1.6 Weibull Distribution

The Maximum Likelihood estimate for the Weibull Distribution are the following:

Estimate Std. Error

τ 0.771439 0.0597669

θ 0.286255 0.0437728

Table 6: MLE Estimates for the Weibull Distribution

3.2 Best Fit Severity Distribution

After obtaining the estimates for the parameters, the fit of the models are tested with respect
to the loss amounts in the data set. The Kolmogorov–Smirnov statistic measures the maximum
deviation between the cumulative distribution function of the model and the sample data set.
The KS statistic is given by

KS = max |F (x)− Fn(x)|,

where F (x) is the cumulative distribution function of the model distribution and Fn(x) is the
empirical cumulative distribution function obtained from the dataset given by

Fn(x) =
1

n

n∑
i=1

1(xi ≤ x).

The model with the lowest KS statistic is the one in which the maximum difference between the
empirical and model cumulative distribution function is the least. Thus, it is taken as the model
that best fits the data set.

The Akaike Information Criterion was also used to evaluate which model had the best fit distri-
bution. The Akaike Information Criteria can be computed by

AIC = −2 ln(L) + 2k,

where L is the value of the likelihood function evaluated at parameter estimates and k is the
number of estimated parameters.
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Table 7 below shows the summary of the fitted severity distributions. Since the Lognormal
distribution has the lowest KS Statistic and AIC, it will be the severity distribution used.

Distribution KS Statistic AIC

Burr 0.076265 -32.65468

Exponential 0.157708 -6.63577

Gamma 0.146766 -10.96864

Lognormal 0.073230 -34.42381

Pareto 0.073864 -30.83833

Weibull 0.118628 -18.05288

Table 7: Summary of Fitted Severity Distributions

4 Frequency Distribution

4.1 Fitting the Frequency Distribution

A fixed time interval of one (1) calendar year was chosen in order to get the frequency of the
loss events. The values were then fit to distributions among the (a, b, 1) class of distributions
including Poisson, Binomial, Negative Binomial, Geometric distributions, as well as the Zero
Truncated and Zero Modified versions of these distributions, if possible. We note that some
of these distributions were not considered due to numerical instability and thus, the fitdist

function was not able to obtain the MLE parameters for these distributions.

Similar to the severity distribution, the Maximum Likelihood Estimates were also used to set
the parameters for these distributions. The Maximum Likelihood Estimate θ̂MLE are the set
parameters that would maximize the likelihood function

L(θ) =
n∏
i=1

f(xi;θ).

4.1.1 Poisson Distribution

The Maximum Likelihood estimate for the Poisson Distribution are the following:

Estimate Std. Error

Poisson λ 3.857143 0.4285714

ZT Poisson λ 3.768055 0.4386686

ZM Poisson
λ 3.767974 -

pM0 0.000000 -

Table 8: MLE Estimates for the Poisson Distribution
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4.1.2 Binomial Distribution

The Maximum Likelihood estimate for the Binomial Distribution are the following:

Estimate Std. Error

Binomial
n 7 -

π 0.551020 -

ZT Binomial
n 7 -

π 0.548927 -

Table 9: MLE Estimates for the Binomial Distribution

4.1.3 Negative Binomial Distribution

The Maximum Likelihood estimate for the Negative Binomial Distribution are the following:

Estimate Std. Error

Negative Binomial
r 415070 -

π 0.000009 -

ZT Negative Binomial
r 42 156.5472831

π 0.918018 0.2792734

Table 10: MLE Estimates for the Negative Binomial Distribution

4.1.4 Geometric Distribution

The Maximum Likelihood estimate for the Poisson Distribution are the following:

Estimate Std. Error

Geometric π 0.205882 0.0400354

ZT Geometric π 0.259260 0.0486915

ZM Geometric
π 0.259221 -

pM0 0.000000 -

Table 11: MLE Estimates for the Geometric Distribution
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4.2 Best Fit Frequency Distribution

Similar to the frequency distribution, the Akaike Information Criterion was also used to evaluate
which model had the best fit distribtuion. The Akaike Information Criteria can be computed
with

AIC = −2 ln(L) + 2k,

where L is the value of the likelihood function evaluated at parameter estimates and k is the
number of estimated parameters.

Furthermore, we also used the Chi-Squared Goodness of Fit test to test the null hypothesis that
the data set does indeed come from the distribution. The test statistic is computed by

χ2 =
k∑
j=1

(Ej −Oj)
2

Ej
,

where Ej is the number of expected observations and Oj is the number of observations.

Distribution χ2 p-value AIC

Poisson 1.684361 0.4307702 88.49071

ZT Poisson 1.653532 0.4374617 87.55315

ZM Poisson 1.653619 0.1984671 89.55315

Binomial 7.919121 0.0048915 99.46210

ZT Binomial 8.050165 0.0045500 99.30482

Negative Binomial 1.684174 0.1943708 90.49072

ZT Negative Binomial 1.548877 0.2133012 89.49986

Geometric 10.862690 0.0043772 105.72370

ZT Geometric 5.516955 0.0633882 94.70947

ZM Geometric 5.516237 0.0188408 96.70947

Table 12: Summary of Fitted Frequency Distributions

Table 12 shows the summary of the fitted frequency distributions. Since the Zero Truncated
Poission distribution has the lowest AIC and a p-value> 0.05, it will be the frequency distribution
used.

5 Aggregate Loss Distribution

After determining the best fit distributions of the frequency and severity random variables, we
can now solve for the probability density function of the aggregate loss distribution using the
Fourier Transform Algorithm.

First, using the central difference approximation, the severity distribution is discretized as fol-
lows. Let δ > 0. The discretization of the distribution Fx(x) on 0, 1δ, 2δ, . . . , (M − 1)δ under
the central difference approximation is given by

fk =


FX

(
kδ +

δ

2

)
− FX

(
kδ − δ

2

)
if k = 1, 2, . . .

FX

(
δ

2

)
if k = 0

.
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Here, M = 1024 was used since an M that is a power of 2 must be used for the Fast Fourier
Transform Algorithm. The plot of the discretized distribution of the Lognormal distribution
with parameters µ = −1.884126 and σ = 1.256090 can be seen in Figure 3 below.

Figure 3: Discretized Severity Distribution

Afterwards, the Fast Fourier Transform is applied to obtain ϕX(z), the characteristic function
of the discretized distribution. The Fast Fourier Transform is the mapping

f̃k =
M−1∑
j=0

fj exp

(
2πi

M
jk

)

=

M
2
−1∑

j=0

f2j exp

(
2πi

M/2
jk

)
+ exp

(
2πi

M/2
k

) M
2
−1∑

j=0

f2j+1 exp

(
2πi

M/2
jk

)
.

In contrast to the Discrete Fourier Transform Algorithm with a complexity of O(M2), the Fast
Fourier Transform is able to compute the Discrete Fourier Transform in just O(M log2M). This
is due to the latter using a divide-and-conquer technique which breaks down the problem into
two sub-problems of the same nature.

Furthermore, if S is the aggregate loss random variable, we have

ϕS(z) = PN (ϕX(z)) ,

where PN(z) is the probability generating function of the frequency distribution. Since we were
able to identify that the best fit distribution of the frequency to be the Zero Truncated Poisson,
we obtain the probability generating function PN(z) which is given by

PN(z) = E(zN)

=
∞∑
k=1

zkpTk

=
∞∑
k=1

zk
e−λλk

k!

1

1− e−λ

=
e−λ

1− e−λ

[
∞∑
k=1

(zλ)k

k!

]

=
e−λ

1− e−λ

[
∞∑
k=0

(zλ)k

k!
− 1

]
=

1

eλ − 1

[
eλz − 1

]
=
eλz − 1

eλ − 1
.
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From these equations, the characteristic function ϕS(z) is obtained. Applying the inverse of the
fast Fourier Transform, the discretized distribution of S is obtained with the same complexity.

fk =
1

M

M−1∑
j=0

f̃j exp

(
−2πi

M
jk

)
.

The probability density function and cumulative density function of the aggregate loss variable
are shown below.

Figure 4: Probability Density Function of S

Figure 5: Cumulative Distribution Function of S

6 99% VaR and 99% TVaR

After obtaining the best fit distribution for the aggregate loss random variable, we proceed to
solve for the 99% Value-at-Risk denoted by VaR0.99(S). The Value-at-Risk is defined as

VaRα(S) = inf{sα ∈ R : P (S > sα) ≤ α}.

The obtained 99% Value-at-Risk was Php 6,616,886.

Furthermore, the Tail Value-at-Risk was also calculated. The Tail Value-at-Risk at a given
confidence level α is the expected loss given that the loss exceeds sα = Varα(S). That is, the
TVaR is given by

TVaRα(S) = E(S | S > sα)

=
1

P (S > sα)

∑
s>sα

sfS(s).

The computed 99% Tail Value-at-Risk was Php 9,615,192.
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7 Conclusion

This paper inspected the data set of the loss amounts due to Damages to Physical Assets under
the Asset Management business line from January 2000 to December 2020. After fitting several
distributions using the fitdistplus package of R, the best fit severity random variable was
found to be a Lognormal distribution with µ = −1.884126 and σ = 1.256090. Moreover, the
best fit frequency random variable was a Zero Truncated Poisson Distribution with λ = 3.768055.

Furthermore, using the Fast Fourier Transform Algorithm, the probability density function and
cumulative distribution function of the aggregate loss random variable was obtained. Using the
results, we obtain a 99% Value-at-Risk of Php 6,616,886 and a 99% Tail Value-at-Risk of Php
9,615,192.

Overall, the results show that Operational Risk losses indeed are significant potential source
of loss for banks and financial institutions and must be studied and modeled so as to be able
to allocate sufficient capital buffer. Without a sufficient risk capital charge, these institutions
would likely be unable or unprepared to deal with these losses. The results show that at a 99%
level of confidence, a capital charge of Php 6.6 million would be sufficient to cover the total
operational loss for this particular business segment and event type. However, in the event that
loss exceeds Php 6.6 million, the expected loss amount is Php 9.6 million.
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